Degree of L_p -Approximation by Integral Schoenberg Splines

MANFRED W. MÜLLER

Universität Dortmund, D4600 Dortmund 50, West Germany Communicated by Lothar Collatz Received April 17, 1976

1. INTRODUCTION

Let $\Delta_n: 0 = x_0 < x_1 < \cdots < x_n = 1 \ (n \in \mathbb{N})$ be a finite partition of the interval I = [0, 1]. This partition is extended to a sequence $\Delta_{n,k} := \{x_i\}_{i=-k}^{n+k}$ of so-called *knots* by setting $x_{-k} = \cdots = x_{-1} = 0$ and $x_{n+1} = \cdots = x_{n+k} = 1$ $(k \in \mathbb{N})$.

Schoenberg [12] has constructed a generalization of the Bernstein polynomials, by associating with a function $f: I \to \mathbb{R}$ the spline function of degree k (order k + 1)

$$S_{n,k}f(x) = \sum_{j=-k}^{n-1} f(\xi_{j,k}) N_{j,k}(x), \qquad 0 \le x \le 1,$$
(1.1)

with knots from Δ_n . $S_{n,k}f$ is to be regarded as an approximation to f on I. The function f to be approximated is evaluated at discrete *nodes* $\xi_{j,k}$ depending on k and $\Delta_{n,k}$:

$$\xi_{j,k} = \frac{x_{j+1} + x_{j+2} + \dots + x_{j+k}}{k} \quad (-k \leq j \leq n-1).$$
(1.2)

These nodes satisfy:

$$0 = \xi_{-k,k} < \xi_{-k+1,k} < \dots < \xi_{n-1,k} = 1, \xi_{j+1,k} - \xi_{j,k} = \frac{x_{j+k+1} - x_{j+1}}{k}.$$
(1.3)

The weights $N_{j,k}(x)$ in (1.1) are known as normalized B-splines:

$$N_{j,k}(x) = \frac{x_{j+k+1} - x_j}{k+1} M_{j,k}(x), \qquad (1.4)$$

where the B-spline $M_{j,k}(x)$ (see [2]) is a spline of degree k, the (k + 1)th divided difference of (the function of t; x fixed)

$$M(x; t) = (k + 1)(t - x)_{+}^{k} = (k + 1)(t - x)^{k}, \quad t \ge x, \\ = 0, \quad t < x,$$

Copyright © 1977 by Academic Press, Inc. All rights of reproduction in any form reserved.

ISSN 0021-9045

on x_j ,..., x_{j+k+1} . Thus

$$M_{j,k}(x) := M(x; x_j, x_{j+1}, ..., x_{j-k+1}).$$

For later reference we list some known facts about *B*-splines (see [2, 3, 9]):

 $N_{j,k}(x) \ge 0,$ supp $N_{j,k}(x) = [x_i, x_{j+k+1}];$ (1.5)

$$\sum_{j=-k}^{n-1} N_{j,k}(x) = 1, \qquad \sum_{j=-k}^{n-1} \xi_{j,k} N_{j,k}(x) = x, \qquad \int_{0}^{1} M_{j,k}(x) \, dx = 1.$$
(1.6)

The Schoenberg spline operators $S_{n,k}$ are linear and positive, reproduce linear functions, and are variation diminishing (see [13]). Marsden [9] proved that they are even a linear approximation method on the space C(I) (with $\|\cdot\|_{\infty}$ the usual sup-norm on I) in the following sense: $\|S_{n,k}f' - f\|_{\infty} \to 0$ for $f \in C(I)$ as the mesh of Δ_n , $|\Delta_n| := \max_i (x_{i+1} - x_i)$, goes to zero. (For k = 1 this method reduces to linear interpolation.)

In Section 2, we shall extend Schoenberg's approximation method to a method for the L_p -approximation of functions $f \in L_p(I)$, $1 \le p \le \infty$, the space of real-valued *p*th power integrable functions on *I*, with $|\cdot|_p$ the usual L_p -norm on *I*. The corresponding spline operators $T_{n,k}$ will roughly speaking be constructed replacing $f(\xi_{j,k})$ in (1.1) by an integral mean of *f* over a suitable small interval around the node $\xi_{j,k}$. Therefore we shall refer to them as "integral Schoenberg spline operators."

In Section 3, the L_p -norm of the difference between a function $f \in L_p(I)$ and the associated integral Schoenberg spline $T_{n,k}f$ is estimated in terms of the first-order integral modulus of continuity $\omega_{1,p}(f, \cdot)$. The main result will be that $||f - T_{n,k}f||_p = O(\omega_{1,p}(f, \cdot \Delta_p))$.

It should be observed that the right-hand side of this estimation is of order $O(n^{-\alpha})$ if the partition Δ_n is equidistant and if f is belonging to a Lipschitz class $\text{Lip}(\alpha, L_p)$. The method of proof is smoothing, i.e., f is approximated first by a function g with g' in $L_p(I)$ and then g is approximated by $T_{n,k} g$ (see, e.g., [4]). The connection between these two processes is given via the K-functional of Peetre [10].

2. L_p -Approximation

Applying the first-derivative operator D to (1.1), we obtain easily, utilizing a lemma of Marsden [9, p. 32],

$$DS_{n,k+1}f(x) = \sum_{j=-k}^{n-1} \frac{f(\xi_{j,k+1}) - f(\xi_{j-1,k+1})}{\xi_{j,k+1} - \xi_{j-1,k+1}} N_{j,k}(x), \quad 0 \quad x = 1, \quad (2.1)$$

where $\xi_{i,k+1}$ $(-k-1 \le i \le n-1)$ are nodes given by (1.2) with k replaced by k+1 and the functions $N_{i,k}(x)$ are the normalized B-splines given by (1.4). $DS_{n,k+1}f$ is a spline function of degree k.

If $f \in L_p(I)$, consider the indefinite integral $F(x) = \int_0^x f(t) dt$. Equation (2.1) applied to the (absolutely continuous) function F gives for $0 \le x \le 1$

$$T_{n,k}f(x) := DS_{n,k+1}F(x) = \sum_{j=-k}^{n-1} \frac{N_{j,k}(x)}{\xi_{j,k+1} - \xi_{j-1,k+1}} \int_{\xi_{j-1,k+1}}^{\xi_{j,k+1}} f(t) dt.$$
(2.2)

 $T_{n,k}f$ is again a spline function of degree k. For reasons mentioned in Section 1 we shall denote it as integral Schoenberg spline of degree k. Its representation (2.2) can be simplified observing (1.4) together with

$$\xi_{j,k+1} - \xi_{j-1,k+1} = \frac{x_{j+k+1} - x_j}{k+1}$$
(2.3)

to

$$T_{n,k}f(x) = \sum_{j=-k}^{n-1} M_{j,k}(x) \int_{\xi_{j-1,k+1}}^{\xi_{j,k+1}} f(t) dt, \qquad 0 \le x \le 1.$$
 (2.4)

The operators $T_{n,k}$ are linear positive and preserve the identity. In a certain sense they can serve as a linear approximation method on the space $L_p(I)$, which is shown by the following theorem.

THEOREM 1. For $f \in L_p(I)$, $1 \le p \le \infty$, there holds (i) $\lim_{|\Delta_n| \to 0} || T_{n,k}f - f ||_p = 0$ $(k \in \mathbb{N} \text{ fixed})$, (ii) $\lim_{k \to \infty} || T_{n,k}f - f ||_p = 0$ $(n \in \mathbb{N} \text{ fixed})$.

Proof. The spline (2.4) can be considered as a singular integral of the type

$$T_{n,k}f(x) = \int_0^1 H_{n,k}(x, t) f(t) dt$$

with the positive kernel

$$H_{n,k}(x, t) = \sum_{j=-k}^{n-1} M_{j,k}(x) \mathbf{1}_{j-1,k+1}(t),$$

where $1_{j-1,k+1}$ is the characteristic function of the interval $[\xi_{j-1,k+1}, \xi_{j,k+1}]$ with respect to *I*. Utilizing (1.4), (1.6), and (2.3) we have for all *n* and *k* and all *x* or *t*, respectively,

$$\int_{0}^{1} H_{n,k}(x,t) dt = \sum_{j=-k}^{n-1} M_{j,k}(x) (\xi_{j,k+1} - \xi_{j-1,k+1}) = \sum_{j=-k}^{n-1} N_{j,k}(x) = 1, \quad (2.5)$$

$$\int_{0}^{1} H_{n,k}(x,t) \, dx = \sum_{j=-k}^{n-1} 1_{j-1,k+1}(t) \int_{0}^{1} M_{j,k}(x) \, dx = 1.$$
(2.6)

Step one. The sequence of operators $(T_{n,k})$ is uniformly bounded in *n* resp. *k*.

First, assume p > 1. Using Hölder's inequality with $p^{-1} - q^{-1} = 1$, we obtain for an arbitrary $f \in L_p(I)$ by (2.5)

$$T_{n,k}f(x) = \left\{ \int_0^1 H_{n,k}(x,t) |f(t)|^p dt \right\}^{1/p}$$

from there by (2.6) and Fubini's theorem

$$\| T_{n,k}f \|_{p} \leq \left\{ \int_{0}^{1} \int_{0}^{1} H_{n,k}(x,t) \left[f(t)^{p} dx dt \right\}^{1/p} \\ = \left\{ \int_{0}^{1} |[f(t)]^{p} \right| \int_{0}^{1} H_{n,k}(x,t) dx \left[dt \right\}^{1/p} = \|[f]\|_{p}$$

and hence $||T_{n,k}||_p \leq 1$ for all *n* and $k \in \mathbb{N}$. The case p = 1 may be dealt with in the same manner; the proof is simpler and does not require (2.5).

Step two. (i) resp. (ii) holds for the dense subspace C(I) of $L_p(I)$. Using (1.1), (2.4), and the very useful relation

$$\sum_{j=-k}^{n-1} M_{j,k}(x) \int_{\xi_{j-1,k+1}}^{\xi_{j,k+1}} dt = 1, \qquad (2.7)$$

we have for an arbitrary $x \in I$

$$|T_{n,k}f(x) - S_{n,k}f(x)| \leq \sum_{i=-k}^{n-1} M_{i,k}(x) \int_{|\xi|_{j=1,k+1}}^{|\xi|_{j,k+1}} |f(t) - f(\xi_{i,k})| dt.$$
 (2.8)

In view of

$$\xi_{j,k+1} - \xi_{j-1,k+1} \leq \min\left(|\mathcal{\Delta}_{n}|, \frac{1}{k+1}\right),$$

$$\xi_{j,k+1} - \xi_{j,k} \leq \min\left(\frac{|\mathcal{\Delta}_{n}|}{2}, \frac{1}{k+1}\right)$$
(2.9)

we obtain from (2.8) and (2.7)

$$|T_{n,k}f - S_{n,k}f|_{p} \leq |T_{n,k}f - S_{n,k}f|_{\infty}$$

$$\leq \omega_{\infty}(f, |\mathcal{A}_{n}|) \qquad (k \text{ fixed, } n \text{ sufficiently large}),$$

$$\leq \omega_{\infty}\left(f, \frac{1}{|k|+1|}\right) \qquad (n \text{ fixed, } k \text{ sufficiently large}),$$

$$(2.10)$$

where $\|\cdot\|_{\infty}$ denotes here the sup-norm on *I* and $\omega_{\infty}(f, \cdot)$ is the ordinary modulus of continuity with respect to this norm. Now

$$||f - T_{n,k}||_p \leq ||f - S_{n,k}f||_p + ||S_{n,k}f - T_{n,k}f||_p.$$

For $|\Delta_n| \to 0$ (resp. $k \to \infty$) each term goes to zero, the first one on account of a result of Marsden [9, Theorem 3], the second one by (2.9), which proves the assertion of step two.

The rest of the proof follows by the density of C(I) in $L_p(I)$ with respect to the L_p -norm since the norms of the operators $T_{n,k}$ are in any of the two cases bounded by 1.

Remarks. (1) If n = 1, then the integral Schoenberg splines reduce to the Kantorovič polynomials [7] (which are obtained from the Bernstein polynomials in the same way as our splines $T_{n,k}f$ from the Schoenberg splines $S_{n,k}f$) and Theorem 1, (ii) turns to a well-known result of Lorentz [8, Theorem 2.1.2].

(2) For a certain modification of the operators $T_{n,k}$ Scherer [11] proved an approximation theorem of the same kind as part (i) of Theorem 1.

As an application of Theorem 1 we obtain the following criterion of compactness for a bounded subset

$$K := \{ f \in L_p(I) \mid ||f||_p \leq M, M \text{ a positive constant} \}$$

of $L_p(I)$: K is compact with respect to the L_p -norm iff $||f - T_{n,k}f||_p \to 0$ $(|\Delta_n| \to 0)$ uniformly for all $f \in K$.

The method of proof is quite similar to an argument given by Lorentz [8, p. 33] for Kantorovič polynomials using the fact that by Hausdorff's criterion of compactness in complete metric spaces (see [5, p. 108]) K is compact iff for each $\epsilon > 0$ there is a finite ϵ -net.

3. Degree of L_p -Approximation

In this section only splines of fixed degree k will be considered. Let $L_p^{1}(I)$ be the space of those functions $f \in L_p(I)$, with f absolutely continuous, $f' \in L_p(I)$ and the norm $||f||_p^1 = ||f||_p + ||f'||_p$.

The following theorem gives an upper bound for the degree of L_p -approximation of integral Schoenberg splines to "smooth" functions $f \in L_p^{-1}(I)$. It will be the key for proving our main result. For its proof we need the following

Lemma.

$$\sum_{j=-k}^{n-1} M_{j,k}(x) \int_{\xi_{j-1,k+1}}^{\xi_{j,k+1}} |t-x| dt \leq (k+1) |\Delta_n| \quad (x \in I).$$

Proof. Fix $x \in \text{supp } M_{j,k}(x)$. In view of supp $M_{j,k}(x) = [x_j, x_{j+k+1}]$ and $\xi_{j-1,k+1}, \xi_{j,k+1} \in \text{supp } M_{j,k}(x)$ we have $|t - x| \leq (k+1) |\Delta_n|$ and thus by (2.7)

$$\sum_{j=-k}^{n-1} M_{j,k}(x) \int_{\epsilon_{j-1,k+1}}^{\epsilon_{j,k+1}} |t-x| dt \leq (k+1) |\Delta_n| \sum_{j=-k}^{n-1} M_{j,k}(x) \int_{\epsilon_{j-1,k+1}}^{\epsilon_{j,k+1}} dt$$

$$= (k+1) |\Delta_n|.$$

THEOREM 2. For $f \in L_p^{-1}(I)$, $1 \leq p < \infty$, there holds

$$||T_{n,k}f - f|| \leq (k+1) ||f'||_p |\mathcal{A}_n|.$$

Proof. Fix $x \in I$. Then by (2.7)

$$|T_{n,k}f(x) - f(x)| = \left| \sum_{j=-k}^{n-1} \int_{\xi_{j-1,k+1}}^{\xi_{j,k+1}} M_{j,k}(x) \left(\int_{x}^{t} f'(u) \, du \right) dt \right|$$
$$\leq \sum_{j=-k}^{n-1} \int_{\xi_{j-1,k+1}}^{\xi_{j,k+1}} \int_{x}^{t} \{M_{j,k}(x) \mid f'(u) \mid du\} \, dt.$$

Applying twice Hölder's inequality with $p^{-1} + q^{-1} = 1$, then Cauchy-Schwarz's inequality, and the lemma yields

$$|T_{n,k}f(x) - f(x)|$$

$$\leq \sum_{j=-k}^{n-1} M_{j,k}(x) \int_{\varepsilon_{j-1,k+1}}^{\varepsilon_{j,k+1}} \left\{ |t - x|^{1/q} \left(\int_{x}^{t} |f'(u)|^{p} du \right)^{1/p} \right\} dt$$

$$\leq \sum_{j=-k}^{n-1} M_{j,k}(x) \left(\int_{\varepsilon_{j-1,k+1}}^{\varepsilon_{j,k+1}} |t - x| dt \right)^{1/q} \left(\int_{\varepsilon_{j-1,k+1}}^{\varepsilon_{j,k+1}} \int_{x}^{t} |f'(u)|^{p} du dt \right)^{1/p}$$

$$\leq \left\{ \sum_{j=-k}^{n-1} M_{j,k}(x) \int_{\varepsilon_{j-1,k+1}}^{\varepsilon_{j,k+1}} |t - x| dt \right\}^{1/q}$$

$$\times \left\{ \sum_{j=-k}^{n-1} M_{j,k}(x) \int_{\varepsilon_{j-1,k+1}}^{\varepsilon_{j,k+1}} \int_{x}^{t} |f'(u)|^{p} du dt \right\}^{1/p}$$

$$\leq (k + 1)^{1/q} |\Delta_{n}|^{1/q} \left\{ \sum_{j=-k}^{n-1} M_{j,k}(x) \int_{\varepsilon_{j-1,k+1}}^{\varepsilon_{j,k+1}} \int_{x}^{t} |f'(u)|^{p} du dt \right\}^{1/p}$$

From this follows in view of supp $M_{j,k}(x) = [x_j, x_{j+k+1}]$, (1.6), (2.9), and $x_{j+k+1} - \xi_{j,k+1} > 0$

$$\| T_{n,k}f - f \|_{p} \leq (k+q)^{1/q} \| \Delta_{n} \|^{1/q} \left\{ \sum_{j=-k}^{n-1} \int_{0}^{1} \left[M_{j,k}(x) \int_{\epsilon_{j-1,k+1}}^{\epsilon_{j,k+1}} \int_{x}^{x_{j+k+1}} \| f'(u) \|^{p} \, du \, dt \right] dx \right\}^{1/p} \leq (k+1)^{1/q} \| \Delta_{n} \|^{1/q} \left\{ \sum_{j=-k}^{n-1} \| \Delta_{n} \| \int_{x_{j}}^{x_{j+k+1}} \| f'(u) \|^{p} \, du \right\}^{1/p} \leq (k+1)^{1/q} \| \Delta_{n} \| \left\{ (k+1) \int_{0}^{1} \| f'(u) \|^{p} \, du \right\}^{1/p} \leq (k+1) \| f' \|_{p} \| \Delta_{n} \|.$$

This completes the proof.

Remark. For the approximation of $f \in L_p^{-1}(I)$ by Schoenberg splines Scherer [11, Satz 2] obtained a result of the same kind.

In what follows we will measure smoothness using the K-functional of Peetre [10]. It is for $f \in L_p(I)$, $1 \leq p \leq \infty$, defined by

$$K_{p}(t,f) = \inf_{g \in L_{p}^{-1}} (\|f - g\|_{p} + t \|g'\|_{p}) \quad (0 \leq t \leq 1).$$
(3.1)

Roughly speaking the K-functional is a seminorm on $L_p(I)$ measuring the degree of approximation of a function $f \in L_p(I)$ by smoother functions $g \in L_p^{-1}(I)$ with simultaneous control on the size of $||g'||_p$ (see [4]).

The more classical measure for smoothness, the integral modulus of continuity, which for $f \in L_p(I)$, $1 \le p \le \infty$, is defined by

$$\omega_{1,p}(f,h) := \sup_{0 < t \le h} \|f(\cdot + t) - f(\cdot)\|_p (I_t)$$
(3.2)

(where $\|\cdot\|$ (I_t) is indicating that the L_p -norm is to be taken over the interval $I_t = [0, 1 - t]$) is in a certain sense equivalent to the K-functional. Johnen [6, Proposition 6.1] proved that there are constants $c_1 > 0$ and $c_2 > 0$, independent of f and p, such that

$$c_1\omega_{1,p}(f,t) \leqslant K_p(t,f) \leqslant c_2\omega_{1,p}(f,t) \qquad (0 \leqslant t \leqslant 1). \tag{3.3}$$

THEOREM 3. For $f \in L_p(I)$, $1 \leq p \leq \infty$, there holds

$$||T_{n,k}f - f||_p \leq M\omega_{1,p}(f, |\Delta_n|),$$

where M is some positive constant, independent of f and p.

Proof. In view of Theorem 2 and $||T_{n,k}||_p \leq 1$, we have

$$\| T_{n,k}h - h \|_{p} \leq 2 \| h \|_{p}, \qquad h \in L_{p}(I),$$

$$\leq (k+1) \| h' \|_{p} \| \Delta_{n} \|, \qquad h \in L_{p}^{-1}(I).$$

When $f \in L_p(I)$ and g is an arbitrary function from $L_p^{-1}(I)$, then

$$\|T_{n,k}f-f\|_p\leqslant \|T_{n,k}(f-g)-(f-g)\|_p+\|T_{n,k}g-g\|_p$$

 $\leq 2\|f-g\|_p+(k+1)\|g'\|_p\|\mathcal{A}_n$
 $\leq 2(\|f-g\|_p+k\|\mathcal{A}_n\|\|g'\|_p).$

Taking now the infimum over all $g \in L_p^{-1}(I)$ on the right-hand side, using the definition of the *K*-functional and observing (3.3), we find

$$||T_{n,k}f - f||_p \leq 2K(k ||A_n|, f) \leq 2c_1\omega_{1,p}(f, k ||A_n|).$$

Since $\omega_{1,p}(f, k \mid A_n \mid) \leq k \omega_{1,p}(f, \mid A_n \mid)$ for $k \in \mathbb{N}$ the theorem is proved.

COROLLARY. If $f \in \text{Lip}(\alpha, L_p)$ $(0 < \alpha \leq 1)$, then $||T_{n,k}f - f||_p = O(|\Delta_n|^2).$

Here the Lipschitz class $\operatorname{Lip}(\alpha, L_p)$ of order α with respect to the L_p -norm is defined as the collection of all functions $f \in L_p(I)$ with the property $\omega_{1,p}(f, t) = O(t^{\alpha}) (t \to 0+)$. To make these last results still more transparent, we are considering the family of spaces $[L_p^{-1}, L_p]_{\alpha}$, $0 \leq \alpha \leq 1$, consisting of all functions $f \in L_p(I)$, for which

$$\|f^{\dagger}_{[L_{p}^{-1},L_{p}]_{x}} := \sup_{0 < t \leq 1} t^{-x} K_{p}'(t,f) < \infty,$$
(3.4)

where $K_{p}'(t, \cdot)$ is a modified K-functional on $L_{p}(I)$ given by

$$K_{p}'(t,f) := \inf_{g \in L_{p}^{1}} \left(\left\| f - g \right\|_{p} + t \left\| g \right\|_{p}^{t} \right)$$
$$= \inf_{g \in L_{p}^{1}} \left(\left\| f - g \right\|_{p} + t \left(\left\| g \right\|_{p} + \left\| g' \right\|_{p} \right) \right) \quad (0 < t \leq 1)$$

and connected to $K_p(t, \cdot)$ by

$$K_{p}(t,f) \leqslant K_{p}'(t,f) \leqslant t \|f\|_{p} + 2K_{p}(t,f)$$

$$(3.5)$$

(see [6, p. 300]). The spaces $[L_p^{-1}, L_p]_\alpha$ are complete under the norm (3.4) and intermediate between $L_p^{-1}(I)$ and $L_p(I)$, i.e., continuously embedded between these two spaces (see, e.g., [1, p. 168]).

392

Utilizing (3.3) and (3.5) it can easily be proved that $f \in [L_p^{-1}, L_p]_{\alpha}$ is equivalent to $f \in \text{Lip}(\alpha, L_p)$, $0 < \alpha \leq 1$. Thus the corollary tells that especially for equidistant partitions of the interval I (i.e., $|\mathcal{A}_n| = n^{-1}$) the elements of an intermediate space $[L_p^{-1}, L_p]_{\alpha}$ between $L_p^{-1}(I)$ and $L_p(I)$ are approximated by our method with respect to the L_p -norm of the order $O(n^{-\alpha})$ if n goes to infinity. The case of fixed knots and degree k tending to infinity will be treated in a forthcoming paper.

References

- 1. P. L. BUTZER AND H. BERENS, "Semi-Groups of Operators and Approximation," Springer, Berlin, 1967.
- H. B. CURRY AND I. J. SCHOENBERG, On Pólya frequency functions. IV: The fundamental spline functions and their limits, J. Analyse Math. 17 (1966), 71-107.
- 3. C. DE BOOR, On calculating with B-splines, J. Approximation Theory 6 (1972), 50-62.
- 4. R. A. DE VORE, Degree of approximation, in "Approximation Theory II" (G. G. Lorentz, C. K. Chui, L. L. Schumaker, Eds.), pp. 117–161, Academic Press, New York, 1976.
- 5. F. HAUSSDORFF, "Mengenlehre," Berlin, 1935.
- 6. H. JOHNEN, Inequalities connected with the moduli of smoothness, *Math. Vestnik* 9 (1972), 289-303.
- 7. L. V. KANTOROVITCH, Sur certain développements suivant les polynômes de la forme de S. Bernstein I, II, C. R. Acad. Sci. URSS (1930), 563-568, 595-600.
- 8. G. G. LORENTZ, "Bernstein Polynomials," Univ. of Toronto Press, Toronto, 1953.
- 9. M. J. MARSDEN, An identity for spline functions with applications, to variationdiminishing spline approximation, J. Approximation Theory 3 (1970), 7-49.
- 10. J. PEETRE, "A Theory of Interpolation of Normed Spaces," Lecture Notes, Brazilia, 1963.
- 11. K. SCHERER, Über die beste Approximation von L^p -Funktionen durch Splines, *in* "Proceedings of the Conference on Constructive Function Theory," pp. 277–286, Varna, 1970.
- I. J. SCHOENBERG, On variation diminishing approximation methods in "On Numerical Approximation," MRC Symposium (R. E. Langer, Ed.), pp. 249–274, Univ. of Wisconsin Press, Madison, 1959.
- I. J. SCHOENBERG, On spline functions, in "Inequalities," Symposium at Wright-Patterson Air Force Base (O. Shisha, Ed.), pp. 255–291, Academic Press, New York, 1967.