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1. INTRODUCTION

Let Ll n : 0 = Xo < Xl < ... < X n = 1 (n E N) be a finite partition of the
interval I = [0, I]. This partition is extended to a sequence Ll n •k := {Xi}~~~k

of so-called knots by setting X_k = ... = X-I = 0 and X n+1 = .. , = Xn+k = I
(k EN).

Schoenberg [12] has constructed a generalization of the Bernstein poly­
nomials, by associating with a function /: I ~ IR. the spline function of
degree k (order k + I)

n-l

Sn.d(x) = L !(gj.k) Nj,k(X),
j~-k

°:s;- X :s;- I, (1.1 )

with knots from Ll n . Sn,d is to be regarded as an approximation to / on 1.
The function/to be approximated is evaluated at discrete nodes t;,k depending
on k and Lln,k:

c,',k' = Xi+1 + Xj+2 k+ ... + XiH (k I) (1.2)S ~ :S;-.i:S;-n- .

These nodes satisfy:

°= t-k'h' < ;-NI.k < ... < tn-u = 1,
C _ C _ XHk+l ~ Xi+1
Sj+I.k H.k - k .

The weights Ni,k(X) in (1.1) are known as normalized B-splines:

N () Xj+k+l - Xi M ()
i,k X = k + I i,h' X ,

(1.3)

(I.4)

where the B-spline Mi,ix) (see [2]) is a spline of degree k, the (k + l)th
divided difference of (the function of t; x fixed)

M(x; t) = (k + 1)(1 - x)~ = (k + 1)(t -- X)k,

= 0,
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t ~ x,

t < X,
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on Xj , ... , XHIe' 1 . Thus
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For later reference we list some known facts about B-splines (see [2, 3.9]):

Ni.I,(x) 0, supp Nj,f,(X) ( 15)

n-l

I Nj,le(x) = I,
i,o~/;

11---1

I ~j,,,NJ./,.(x)
jccf,

x.
0\

1\,1),I,(x) dx 1. (1.6)

The Schoenberg spline operators So ,Ie are linear and positive, reproduce linear
functions, and are variation diminishing (see [13]). Marsden [9] proved
that they are even a linear approximation method on the space C(1) (with

the usual sup-norm on 1) in the following sense:! S" ,If -~~ °for
IE C(J) as the mesh of Ll n , ' Ll n I: maX(Xi i1 x,), goes to zero, (For
k ·.·.c~ I this method reduces to linear interpolation.)

In Section 2, we shall extend Schoenberg's approximation method to a
method for the Lv-approximation of functions IE Lif), I p CD. the
space of real-valued pth power integrable functions on /, with . i p the usual
L ,,-norm on 1. The corresponding spline operators Til ,f.' will roughly speaking
be constructed replacing f(~J./.) in (1.1) by an integral mean of I over a
suitable small interval around the node ti,f. . Therefore we shall refer to them
as "integral Schoenberg spline operators,"

In Section 3, the L1'-norm of the difTerence between a function f L ).(1)

and the associated integral Schoenberg spline TII,f,I is estimated in terms
of the first-order integral modulus of continuity UJl.,U: '), The main result
will be that U - Tn, ieI'll O(UJJ,"(f: Ll" I),

It should be observed that the right-hand side of this estimation is of
order O(n-a) if the partition .d II is equidistant and if I is belonging to a
Lipschitz class Lip(ex, L,,), The method of proof is smoothing, i,e" f is
approximated first by a function g with g' in L ,,(I) and then g is approximated
by Tn,1e g (see, e,g" [4]), The connection between these two processes is given
via the K-functional of Peetre [10].

2. L ,,-A PPROXIMATIO ....

Applying the first-derivative operator D to ( I ,I), we obtain easily, utilizing
a lemma of Marsden [9, p, 32].

DSn,I",IJ(X) 'II fJff;/~]) j;:l{'1,,-fl1 iV;,I'(Y).
<; i. /. 1 - S i 1.1. 1

() I. (2, I)
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where ~i.k+1 (-k - 1 :( i :( n - I) are nodes given by (1.2) with k replaced
by k + I and the functions Ni.k(X) are the normalized B-splines given by
(1.4). DSn •k+1fis a spline function of degree k.

Iff EO Lp(I), consider the indefinite integral F(x) = f; j(t) dt. Equation (2.1)
applied to the (absolutely continuous) function F gives for 0 :( x :( I

n-l N. (x) <i.k+1

Tn.d(x):= DSn.k+lF(x) = L T.-_~kt,_- f let) dt. (2.2)
i=-k ~J.k+l SJ-l,k+l !fj~l,k+l

Tn.kf is again a spline function of degree k. For reasons mentioned in
Section I we shall denote it as integral Schoenberg spline of degree k. Its
representation (2.2) can be simplified observing (I.4) together with

to

c C XHk+1 - Xi
Si.k+1 - Si-l.k+1 = k + I

n-l <i.k+l

Tn.d(x) = L Mi.k(x) f I(t) dt,
i=-k J i-l.k+1

O:(x:(l.

(2.3)

(2.4)

The operators Tn •k are linear positive and preserve the identity. In a certain
sense they can serve as a linear approximation method on the space LiI),
which is shown by the following theorem.

THEOREM I. For f E Lei!), I :::;: p :( 00, there holds

(i) lim!1 Tn k!' .- flip = 0
ILl" I ~O ' .' ,

(ii) lim I( T d - (if = 0
k---'>XJ \ n,. . I P

(k E N fixed),

(n E N fixed).

Proof The spline (2.4) can be considered as a singular integral of the type

Tn.d(x) =, CHn,/c(x, t)/(t) dt
'0

with the positive kernel
n-l

Hn.k(x, t) = L Mulx) Ij-l.k+l(t),
j~-k

where I i-1.1<+1 is the characteristic function of the interval [gj-l.k+l , ~j,I.;+1]

with respect to I. Utilizing (104), (1.6), and (2.3) we have for all nand k and
all x or t, respectively,

1 n-l n-lJ Hn.k(x, t) dt = ,L Mi./lx)(gi.k+l -- ~j-1.k+l) = I, Ni.lx) ~~ 1, (2.5)
o J~-k )~-k

1 n-1 1J Hu(x, t) dx =I Ii-l.W(t) J Mi.ix) dx = 1. (2.6)
o J=-" 0
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Step one. The sequence of operators (Tn,k) is uniformly bounded In 11

resp. k.
First, assume pl. Using Holder"s inequality with p-J q-l I.

we obtain for an arbitraryfc= L,,(I) by (2.5)

from there by (2.6) and Fubini's theorem

\/,1.1 ',/)')'
j I H".,(x, 1) t(1))' d.y dt \,
~'O ~ 0

,(1 I () i '/)')'- l I f(r)'i' Hn.k(x, 1) d\ I dt \
. n ' . n

and hence T".1. /l I for all nand k E' N. The case p I may be dealt
with in the same manner; the proof is simpler and does not require (2.5).

Step two. (i) resp. (ii) holds for the dense subspace C(l) of L ,,(f).
Using 0.1), (2.4), and the very useful relation

11-1 ,J),!: I

.I Mj,I,(X).I, dr
! ",-,,---J,' ~, J·-l.k I

we have for an arbitrary x E' J

11--1

Tn,d(x) - SIl"J(X)! / I Mj.,,(x) r
,; I.. • ~

Tn view of

-1

J 1

J. (2.7)

(2.8)

(2.9)

we obtain from (2.8) and (2.7)

(k fixed, 11 sufficiently large).

(11 fixed. k sufficiently large).

(2. I 0)
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where II . iloo denotes here the sup-norm on I and wooU; .) is the ordinary
modulus of continuity with respect to this norm. Now

For I .::::In I -+ 0 (resp. k -+ OJ) each term goes to zero, the first one on account
of a result of Marsden [9, Theorem 3], the second one by (2.9), which proves
the assertion of step two.

The rest of the proof follows by the density of C(I) in LvCI) with respect to
the L 1J-norm since the norms of the operators T".k are in any of the two cases
bounded by I.

Remarks. (I) If n = 1, then the integral Schoenberg splines reduce to
the Kantorovic polynomials [7] (which are obtained from the Bernstein
polynomials in the same way as our splines Tn,kf from the Schoenberg
splines S".d) and Theorem I, (ii) turns to a well-known result of Lorentz
[8, Theorem 2.1.2].

(2) For a certain modification of the operators Tn •k Scherer [II]
proved an approximation theorem of the same kind as part (i) of Theorem 1.

As an application of Theorem I we obtain the following criterion of
compactness for a bounded subset

K : = {f E LIJ(J) I Ilfll" :;;; M, M a positive constant}

of LvC/): K is compact with respect to the Lp-norm iff lif - Tn,dllp -+ 0
(i .::::I n I -+ 0) uniformly lor allIE K.

The method of proof is quite similar to an argument given by Lorentz
[8, p. 33] for Kantorovic polynomials using the fact that by Hausdorff's
criterion of compactness in complete metric spaces (see [5, p. 108]) K is
compact iff for each E > 0 there is a finite E-net.

3. DEGREE OF Lp-ApPROXIMATION

In this section only splines of fixed degree k will be considered. Let L p 1(/)
be the space of those functions IE LvCI), with I absolutely continuous,
l' E Lp(/) and the norm 11/11; = li/ilp + II!' III}'

The following theorem gives an upper bound for the degree of Lp-approxi­
mation of integral Schoenberg splines to "smooth" functions f E Lpl(I).
It will be the key for proving our main result. For its proof we need the
following
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LEMMA.
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n-l .. ~j,k-il

I Mj.,(x) J t - x i cit (k - I) i LJ" ;
j=-I, gj-1,7.. l

(x E I).

Proof Fix x E supp Mj.,(x). In view of supp Mj,J,(x)c [Xj, Xjk+1] and
~;-1,k+l' ~U'il E supp Mu(x) we have It - xi (k +- 1) i LJ,,! and thus
by (2.7)

II MuJx) {),k lit Xl dt (k
J~----/.' gj-l ,k' i-1

Il-1 ~

l)i LJ " I M j ,k(X)5 df
Jo=c-k of i 1,~:; 1

(k 1) LJ "

THEOREM 2. For f E L,,1(I), I ~ p 00, there holds

Proof Fix X E 1. Then by (2.7)

I Tn,lJ(x) - I(x)'

n-l ,.~ J,k 1 rot

I J .I.~ Mj,/,(x) ! j'(u)1 duj dt.
)o,--k "')'---1./.,1 ,(

Applying twice Holder's inequality with pol q-] '" 1, then Cauchy-
Schwarz's inequality, and the lemma yields

I Tn.kf(x) - f(x)1

(n-l <},1'1l rt 11/p
~ (k +- l)1/q

I LJ n 1
1/'1)2: Mj.k(x) r . I j'(Il)!P dll dt\ .

~J=-k "'j--l,7.j] x



SCHOENBERG SPLINES 391

From this follows in view of supp Mi.k(X) = [Xi, Xi+k+1J, (1.6), (2.9), and
Xj+k+l - gi.k+l > 0

II Tn.d-fll21

;'? (k + q)l/q
I .dn 1

1
/'1 Lflk f [Mj,k(X) (~::~l fHHl I l'(u)jP du dt] dX(P

;'? (k + l)lfq l.dn i !(k + 1) f !I'(u)/P dUr/
p

;;? (k + 1) IiI' lip j.d n I.

This completes the proof.

Remark. For the approximation of /E: L/(I) by Schoenberg splines
Scherer [11, Satz 2] obtained a result of the same kind.

In what follows we will measure smoothness using the K-functional of
Peetre [10]. It is for / E: LiI), 1 '0;:;; p ,s:;; 00, defined by

Kit, f) = inf
1
(II/ - g !Iv + til g' Ilv)

ueLp

(0 ,s:;; t ,s:;; I). (3.1)

Roughly speaking the K-functional is a seminorm on Lv(I) measuring the
degree of approximation of a function f E: Lv(I) by smoother functions
g E L p1(1) with simultaneous control on the size of II g' lip (see [4]).

The more classical measure for smoothness, the integral modulus of
continuity, which for f E L v(1), 1 ,s:;; p ,s:;; 00, is defined by

WI.p(/' h):= sup Ilf(' + t) - 100Iv (It)
O<t;i;h

(3.2)

(where II . II (It) is indicating that the Lv-norm is to be taken over the interval
It = [0, 1 - tJ) is in a certain sense equivalent to the K-functional. Johnen
[6, Proposition 6.1] proved that there are constants CI > 0 and C2 > 0,
independent of/and p, such that

(0 ,s:;; t ,s:;; 1). (3.3)

THEOREM 3. For1 E LvCI), I ,s:;; P ,s:;; 00, there holds

where M is some positive constant, independent off and p.
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Proof In view of Theorem 2 and T".k ii" 1, we have

Tn.JI - h '!" 2 h '"

(k I) h' " J" ,

hE L/l).

hE L"l(l).

WhenfE Lp(I) and g is an arbitrary function from L J)I(1), then

T",I,f -P:" T".I,'(! ,- g) (f g}111 T "n,l,g
<..'" I'

~

2 f g, (k -! I) g J"~

)1

2(i'I gl'Jl k J" g
,

pl.:

Taking now the infimum over all g L/(I) on the right-hand side. using the
definition of the K-functional and observing (3.3), we flnd

Tn,l,f I}! 2K(k! LJ" .il

Since Wl",u; k ! LJ" i) kwl.i,u; i LJ}! ) for k E f"~ the theorem is proved,

COROLLARY. IffE Lip(.~. L,,) (0 < >: 1), then

D( LJ" 'j,

Here the Lipschitz class Lipe>:, Lv) of order>: with respect to the L}J-norm
is defined as the collection of all functions f ,= L iI) with the property
Wl,pU; t)c~ D(t Q

) (t -~ 01), To make these last results still more transparent,
we are considering the family of spaces [L,,t, L ,,1, ,Ox I, consisting
of all functionsfEO L/I), for which

sup (-\](]I'(t, f)
o t« 1

~. (3.4)

where Kp'(t, -) is a modified K-functional on LAI) given by

K p'(t,1):= inf (:J
flE:L p

1 ",..., jJ

inf C' ( g" t(l: gil
ucL/ '

and connected to Kp(t, .) by

g' ',,)) (0 \1

K,,(t,1) K,,'(t,f) t fi,,";-2K,,(t,f) (3.5)

(see [6, p. 300]), The spaces [L]I\ L"to are complete under the norm (3.4)
and intermediate between L},t(1) and L,,(I), i.e., continuously embedded
between these two spaces (see, e.g., [I, p. 168]).
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Utilizing (3.3) and (3.5) it can easily be proved that f E [L p\ Lp]~ is
equivalent to fE Lip(ex, L p), 0 < ex ~ 1. Thus the corollary tells that
especially for equidistant partitions of the interval I (i.e., I Ll n I = n-1) the
elements of an intermediate space [L pl, Lp]~ between L/(I) and LiI) are
approximated by our method with respect to the Lp-norm of the order O(n-~)

if n goes to infinity. The case of fixed knots and degree k tending to infinity
will be treated in a forthcoming paper.
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